The equation of the plane which contains the line of intersection of the planes x + y + z - 6 = 0 and 2x + 3y + z + 5 = 0 and perpendicular to the xy plane is:

A.
$$x - 2y + 11 = 0$$

B.
$$x + 2y + 11 = 0$$

C.
$$x + 2y - 11 = 0$$

D.
$$x - 2y - 11 = 0$$

B.
$$x + 2y + 11 = 0$$

Equation of the required plane is

$$(x + y + z - 6) + \lambda(2x + 3y + z + 5) = 0$$

i.e.
$$(1 + 2\lambda)x + (1 + 3\lambda)y + (1 + \lambda)z + (-6 + 5\lambda) = 0$$

This plane is perpendicular to xy plane whose

equation is
$$z = 0$$

i.e.
$$0.x + 0.y + z = 0$$

 $\ensuremath{\boldsymbol{.}}$ By condition of perpendicularity

$$0.(1 + 2\lambda) + 0.(1 + 3\lambda) + (1 + \lambda).1 = 0$$

i.e.
$$\lambda = -1$$

∴ Equation of required plane is

$$(1-2)x + (1-3)y + (1-1)z + (-6-5) = 0$$

or
$$x + 2y + 11 = 0$$